Movement Disorder Monitor

Movement Disorder Monitor

Forty-five million people in the US suffer from an involuntary movement disorder. Accurate motor symptom tracking is crucial to improve therapy for those suffering from Parkinson’s disease, stroke, essential tremor, ALS, cerebral palsy, and other neurological disorders. However, monitoring these symptoms using the current standard of paper-and-pencil instruments, or visual observation, is impractical.

We have developed a generic software platform to monitor how the presence and severity of movement disorders change with treatment or as the disease progresses using only wearable sensor data. Our system is designed to use a minimum number of hybrid sensors that are capable of simultaneously detecting muscle activation and movement data. The application software combines advanced machine learning algorithms works with our ambulatory data acquisition systems to create continuous symptom tracking devices for Parkinson disease that can be currently used in a lab or clinical environment. Future work will expand the technology to track other neurological conditions, and develop a version for unsupervised home use.

Detailed descriptions can be found in the Publication List below.

Applications

Limb-specific Tracking of Disorder Severity

Continuous Tracking during Daily Activity

Muscle Activity and Movement Sensors

Objective and Accurate Summary Reports

Multiple Disorders

Publications

Cole BT, Roy SH, De Luca CJ, and Nawab SH. Dynamical Learning and Tracking of Tremor and Dyskinesia from Wearable Sensors, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22 (5): 982-91, Sept 2014. PMID 24760943.

Roy SH, Cole BT, Gilmore LD, De Luca CJ, Thomas CA, Saint-Hilaire MM and Nawab SH. High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained activity. Movement Disorders,28(8):1080-87, July 2013. PMID: 23520058.

Roy SH, Cheng MS, Chang SS, Moore J, De Luca G, Nawab SH, and De Luca CJ. A combined sEMG and accelerometer system for monitoring functional activity in stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17 (6): 585-94, 2009. PMID: 20071273.


Support

The views expressed in these materials do not necessarily reflect the official policies of the U.S. Department of Defense, U.S. Department of the Interior, U.S. Department of Veterans Affairs, U.S. Department of Health and Human Services, the NIH or its components; nor does the inclusion of trade names/logos/trademarks/or references to outside entities constitute or imply an endorsement by any Federal entity.

NINDS

© Copyright 2018 Altec Incorporated - All Rights Reserved